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Abstract

Theranostic nanoparticles are emerging as a novel mechanism for detecting and treating
cancer. Due to the difficulties in detection and treatment of pancreatic cancer, these particles could
serve within this unique niche. In this study, a Syndecan-1 ligand was utilized to increase tumor
specificity of fluorescent dye encapsulated liposomes which were evaluated as a potential
theranostic nanoparticle for pancreatic adenocarcinoma. Their diagnostic capabilities and
specificity to pancreatic adenocarcinoma were determined in vitro using immunocytochemistry
and in vivo using multi-spectral optoacoustic tomography (MSOT). Immunocytochemistry showed
that liposomes preferentially bound and released their contents into cells expressing high levels of
Insulin-Like Growth Factor 1 Receptor. In an orthotopic pancreatic cancer mouse model, the
liposomes preferentially targeted the pancreatic tumor with little off-target binding in the liver and
spleen. Peak accumulation of the liposomes in the tumor occurred at 8 h post-injection. MSOT
imaging was able to provide high-resolution 3D images of the tumor and liposome location. Ex
vivo analysis showed that non-targeted liposomes accumulated in the liver suggesting that
specificity of the liposomes for pancreatic adenocarcinoma was due to the presence of the
Syndecan-1 ligand. Syndecan-1 tagged liposomes specifically target pancreatic adenocarcinoma
both in vitro and in vivo. Once bound, the liposomes released the dye in vitro as indicated by red
fluorescence of DNA-bound propidium iodide. The therapeutic drug-delivering capabilities of

Syndecan-1 liposomes remain to be tested.



Introduction

Pancreatic ductal adenocarcinoma is a highly aggressive and almost universally fatal
cancer with an average five-year survival rate of 5% across all stages (1). The poor prognosis of
pancreatic cancer patients is due to inadequate early detection and ineffective treatments once
diagnosed. Due to its asymptomatic nature in the early stages, over 85% of patients are diagnosed
at stages IlI-1V with metastases, eliminating surgery as a curative option (1-2). Furthermore,
ultrasound-guided needle biopsy, commonly used to diagnose pancreatic adenocarcinoma,
requires suspected tumors to be at least 1 cm® (3). The current gold-standard treatment for
pancreatic cancer, gemcitabine, only enhances survival by 6.7 months. Advancements in
chemotherapy such as FOLFIRONIX and nab-Paclitaxel minimally increase median survival, with

survival rates of 11 and 8.5 months, respectively (4).

The underlying biology of pancreatic ductal adenocarcinoma can make these tumors
particularly resistant to chemotherapy. The dense desmoplastic stroma and poor vascularity of
these tumors inhibits the accumulation of traditional chemotherapies and prevents sufficient drug
concentrations from being attained within the tumor (7). Nanoparticle drug carriers can be an
effective strategy for overcoming these extracellular barriers to drug delivery by increasing the
therapeutic load at tumor sites while decreasing systemic toxicity (8-10). Enhanced accumulation
at pathological sites can result in an increase in the drug's therapeutic efficacy and reduction of
incidence and intensity of side effects, resulting in improved patient acceptance, compliance and
prognosis (8, 12-14).

Liposomes in particular have multiple desirable characteristics, such as the capacity for
encapsulating large amounts of materials, the ability to protect these materials from degradation,

and the capability for intracellular delivery through fusion with the plasma membrane (9).



Liposomes are also permeable in environments with high collagen content, a trait of the
extracellular matrices of solid pancreatic tumors (10-11). In addition to being drug carriers,
liposomes can also encapsulate contrast agents for diagnostic imaging, thus combining diagnostic
and therapeutic functions into one system. These particles, termed "theranostic nanoparticles”, are
a novel approach for detecting, monitoring, and treating cancer (12-15). The contrast agents loaded
into theranostic nanoparticles allow tracking of nanoparticle accumulation and biodistribution
using standard techniques such as planar fluorescent imaging (16). An important characteristic of
theranostic nanoparticles is that a targeting ligand can be covalently attached to the outside of the
particle so that it will preferentially accumulate at the tumor site (15-18).

Syndecan-1 (Sdcl) can be used to specifically target pancreatic adenocarcinoma due to its
known interactions with Insulin-like Growth Factor 1 receptor (IGF1R) (19-21). IGF1R has been
shown to be highly expressed in pancreatic adenocarcinoma and other metastatic cancers with an
important role in cell proliferation, tumor metastasis, and anti-apoptotic pathways (22-26). High
IGF1R expression correlates to resistance to chemotherapy and radiation-induced apoptosis and is
a marker for poor prognosis in pancreatic, breast, lung, and prostate cancers (23-26). The
ectodomain of Sdcl binds to IGFIR to activate avPs integrin in many aggressive cancers, a
mechanism not found in non-malignant epithelial cells (20-21). Furthermore, Sdc1-tagged optical
probes have already been shown to bind specifically to pancreatic tumor cells in vivo (27). Thus,
covalently attaching Sdc1 to the outside of a liposome may produce a theranostic nanoparticle that
is specific to pancreatic adenocarcinoma, potentially leading to an improved method of

transporting imaging agents and chemotherapies directly to the tumor site.

Because Sdcl-tagged liposomes can encapsulate a variety of optically active molecules, or

chromophores, they can be imaged using traditional imaging techniques (16). However, multi-



spectral optoacoustic tomography (MSOT) offers several advantages over traditional nuclear
imaging modalities. MSOT operates via the photoacoustic effect, wherein a medium excited by
pulsed laser light subsequently emits an acoustic wave. Chromophores absorb a photon and enter
an excited state, generating heat upon relaxation. This pulse of heat leads to an increase in
temperature and local pressure, termed thermoelastic expansion. Propagation of the pressure
differential results in the formation of an acoustic wave, which can then be recorded with
ultrasound detectors to create high-resolution 3D images (28-29). Expansion of endogenous and
exogenous chromophores occur at specific excitation wavelengths, allowing for selective imaging
of compounds of interest. Due to the low-scattering characteristic of ultrasonic waves, images do
not suffer from the light scattering or signal attenuation that limits optical and fluorescent imaging.
Additional advantages include an enhanced spatial resolution of up to 150 um and accurate 3D
imaging of deep tissue layers (29-33). Furthermore, multi-wavelength measurements can be used
to quantify spatially varying concentrations of chromophores within biological tissues (28). MSOT
can therefore be a valuable tool in determining the precise location and concentration of theranostic

nanoparticles in vivo.

In this study, Syndecan-1 tagged liposomes were synthesized to encapsulate a near-infrared
(NIR) fluorescent dye, CF-750 or propidium iodide (PI), to allow for tracking of the liposome in
vivo or determine the potential of the liposome to release its cargo within a tumor cell, respectively
(Fig. 1). As a further control within experiments of the Syndecan-1 tagged liposome, untargeted
liposomes were utilized. Untagged liposomes had no targeting ligand.

The specificity of Sdcl liposomes for pancreatic adenocarcinoma was evaluated both in
vitro and in vivo. Immunocytochemistry was performed to visualize IGF1R-dependent binding

and endocytosis of Sdcl and untagged liposomes. Sdcl liposomes were systemically injected by



intravenous injection into an orthotopic mouse model to allow for in vivo tracking of
biodistribution and accumulation. This study examines the feasibility of using Sdcl-tagged

liposomes as a theranostic nanoparticle for pancreatic adenocarcinoma.



Materials & Methods
Cell Culture

Pancreatic adenocarcinoma cell lines S2VP10 and S2013, metastatic subclones of the
SUIT-2 line, were obtained from Dr. Michael A. Hollingsworth at the University of Nebraska.
Squamous cell carcinoma cell line SCC-1 was obtained from the University of Michigan.
Pancreatic adenocarcinoma cell line MiaPaCa-2 was obtained from ATCC (Manassas, VA).
S2VP10, S2013, and SCC-1 cells were cultured in RPMI 1640 and MiaPaCa-2 cells in DMEM
medium (Gibco, Grand Island, NY), supplemented with 10% Fetal Bovine Serum (Atlanta
Biologicals, Flowery Branch, GA) and 1% L-Glutamine (Gibco). The cells were cultured at 37°C
and 5% CO». S2VP10 cells were infected with a retrovirus containing the firefly luciferase (Luc)
gene (Stratagene, La Jolla, CA) and a luciferase-positive single cell clone, S2VP10L, was isolated

(34).

Synthesis of Liposomes
Materials

Soybean L-a-phosphatidylcholine (95%) (PC), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine  (DOPE) and  1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
(hexanoylamine) (CAP) were purchased from Avanti Polar Lipids (Alabaster, AL). N-
Hydroxysulfosuccinimide sodium salt (NHS), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide
hydrochloride (EDC) and propidium iodide were purchased from Sigma (St. Louis, MO). CF-750
N-hydroxysuccinimide ester amine-reactive dye was purchased from Biotium (Hayward, CA).

Finally, Syndecan-1 (Sdcl) was purchased from Prospec (Rehovot, Israel).



Synthesis of propidium iodide and CF-750 encapsulated liposomes

Naked liposomes were synthesized by thin film hydration method (35). Soybean PC
(0.0067 g), CAP (0.0023 g) and DOPE (0.0020 g) were dissolved in chloroform. Then, the
chloroform was evaporated by heating at 70°C for 10 min in a rotary evaporator to get a thin film
of lipids. The thin film was hydrated by adding 1 ml PBS (pH 7.4, 0.9% NaCl) and propidium
iodide or CF-750 (1 mM, 0.1 ml) for 2 h at 70°C. Then, the liposomes were sonicated for 2 h at

70°C. Finally, liposomes were extruded four times through a polycarbonate filter (200 nm) at 70°C.
Conjugation of Syndecan-1 to dye-encapsulated liposomes

Syndecan-1 was conjugated to the dye-encapsulated naked liposomes by carbodiimide
chemistry. Syndecan-1 (0.74 mM, 20 ul) was mixed with NHS (1 mM, 0.1 ml) and EDC (1 mM,
0.1 ml) and incubated for 6 h at room temperature at pH 7.5. Then, 1 ml of liposomes was added
to this solution and mixed for 1 day at room temperature. The excess NHS and EDC were removed
by dialysis, minimum 2000-3000 Da. The stock solution of Sdc1 conjugated liposomes was diluted

further to get the desired concentration.

Characterization of Liposomes
DLS measurements

The size distribution of the liposomes was analyzed by dynamic light scattering (DLS)
using a Zetasizer Nano-ZS (Malvern Instruments Ltd., Malvern, United Kingdom). The detection
angle was 173° and the incident beam was a He—Ne ion laser (A = 633 nm). Correlation functions
were analyzed by a histogram method and used to determine the diffusion coefficient (D) of the
liposomes in the sample. Hydrodynamic radius (Rh) was calculated from D by using Stokes—

Einstein's equation:



K,T
Ry= 6Tt2‘|D

where kB is Boltzmann’s constant, T is absolute temperature, and 7 is solvent viscosity (36).
Zeta-potential measurements

Electrophoretic mobility (LE) of the liposomes was measured at 25 °C with the Zetasizer
Nano-ZS. The zeta-potential of the samples was calculated from pE using following
Smoluchowski's equation:

Ce
E=_
i

where ( is the zeta-potential, € the permittivity of solvent, and 1 the solvent viscosity (36).
Transmission electron microscopy

10 pL of 1 mM liposomes were dropped on 200 mesh copper grids (Electron Microscopy
Sciences, Hatfield, PA) and dried at room temperature for 5 h. Images were collected using the
Phillips CM-10 transmission electron microscope at 80kV, equipped with a 15 megabyte SIA
digital camera.
UV-Vis spectroscopy

The absorption spectrum for the CF-750 encapsulated liposomes was analyzed via UV-
Visible spectroscopy. Absorption at wavelengths every 10 nm between 650 and 860 nm was
measured using the NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA) and
accompanying software. Near-infrared (NIR) fluorescence signal was confirmed using Li-Cor

Odyssey infrared scanner (Li-Cor, Lincoln, NE).

Western Blot Analysis
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Whole cell lysates from S2VP10L, MiaPaCa-2, S2013, and SCC-1 cells were collected to
determine IGF1R expression. The cells were plated at a density of 5x10° cells per well in a 6-well
plate 24 h prior to protein harvest. Cells were then lysed in a solution containing 1% NP-40, 1%
protease inhibitor, and 1% phosphatase inhibitor (Thermo) in deionized water. The lysates were
centrifuged at 13,000 x g for 10 min. Total protein concentration was determined via Bradford

assay (Bio-Rad, Hercules, CA).

Approximately 50 pg of total protein was dissolved in deionized water, loading buffer, and
reducing agent (Life Technologies, Carlsbad, CA). Proteins were separated using NuPage 4-12%
Bis-Tris gel and transferred onto a nitrocellulose membrane by iBlot (Life Technologies). The
membrane was blocked in blocking buffer (Li-Cor) for 30 min and then incubated overnight at
4°C with IGF1R antibody (Abcam, Cambridge, England) at a concentration of 1 ug/ml and -
Actin antibody (Thermo) at a concentration of 1:3000. The membrane was then washed 3X with
TBS (20 mM Tris-HCI, 150 mM NaCl in diH20) for 10 min each, incubated with donkey anti-
mouse IRDye 680RD and donkey anti-rabbit IRDye 800CW secondary antibodies (Li-Cor) for 1
h, washed 3X with TBS for 10 min each, and scanned using Li-Cor Odyssey infrared scanner.

Dosimetry was performed using Li-Cor software.

Immunocytochemistry

S2VP10L and SCC-1 cells were each seeded into 3 wells of a chamber slide at a density of
3x10° cells/well. Cells were grown overnight in RPMI with 10% FBS and 1% L-Glutamine at
37°C with 5% CO.. The cells were then serum-starved for 3 h by switching to RPMI with 1% BSA
(Fisher). Immunocytochemistry buffers were prepared as follows: PBS™ (0.5mM CaCl, and

MgCl; in PBS), PBS™ (97.9 mL PBS++, 2 mL 10% BSA + 90.08 mg dextrose), and citrate
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buffer (1 mL 20X SCC buffer, 19 mL ddH20). Following starvation, cells of each line were treated
with 30 puL PBS (control), 30 L of 1 mM naked liposomes, or 30 pL of 1 mM Sdc1l liposomes for
3 h. Then, the wells were washed 2X with cold PBS™**, 3X with ice cold citrate buffer, and again
2X with cold PBS™"". Cells were fixed with 4% paraformaldehyde (Electron Microscopy
Sciences) for 5 min at 25°C followed by 15 min at 4°C. Next, the cells were washed 6X with PBS**
for 10 min each. The slides were mounted in ProLong with DAPI (Invitrogen, Waltham, MA) and
set overnight. Images were taken at 400X magnification with a Zeiss Photometer 2 (Carl Zeiss,
Oberkochen, Germany) using DAPI, FITC, and Texas Red filters. The exposure times used were

20 ms DAPI, 200 ms FITC, and 200 ms Texas Red.

Orthotopic Pancreatic Cancer Xenografts

Strict adherence to the University of Louisville Institutional Animal Care and Use
Committee (IACUC)-approved protocol was maintained throughout the study. Five-week old
female C.B-17 SCID mice (Harlan Laboratories, Indianapolis, IN) were acclimated for one week
prior to the study. Mice were anesthetized for all surgical procedures with 1.6% isoflurane and all
procedures were performed in a sterile hood. Orthotopic cell implantation was performed as
previously described (30, 34). A 1-cm incision was made in the left upper abdominal quadrant and
the spleen was located and used to indirectly position the tail of the pancreas, avoiding direct
manipulation of the pancreas. The suspension of S2VP10L (Luc positive) cells in PBS was stored
on ice and drawn up with a 28-gauge needle. Five mice were each injected with 1.5x10° S2VP10L
(Luc positive) cells (30 uL) into the tail of the pancreas. Sterile cotton-tipped applicators were used
to cover the injection site for 30 s to prevent peritoneal leakage. The organs were repositioned in

the abdomen and the incision was closed using a single-layer closure with 5-0 nylon sutures. The
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mice recovered on a heated pad while receiving clear liquid acetaminophen for 24 h with food and
water ad libitum. Confirmation of orthotopic implantation was performed using bioluminescence
optical imaging on the Advanced Molecular Imager AMI-1000X (Spectral Imaging Instruments,
Tucson, AZ). Mice with detectable leakage from the pancreas were removed from the study. Mice
received intraperitoneal (IP) injection of 2.5 mg luciferin 10 min prior to weekly imaging to
monitor orthotopic tumor and metastatic growth. Region of interest (ROI) analysis was used to
measure light emitted for orthotopic sites using the AMI Image Viewer software. Sutures were
removed seven days following implantation. At 10 days post-implantation, mice were 1V injected

with 200 pL of 100 nM naked or Sdcl-tagged liposomes each containing CF-750 dye (Biotium).

In Vivo Imaging and Reconstruction

Multispectral optoacoustic tomographic (MSOT) imaging was performed as described by
Kimbrough et al (27). Mice were anesthetized with 1.6% isoflurane and prepped for imaging with
a combination of Nair cream with aloe (Church & Dwight Co., Princeton, NJ) and shaving. The
mice were imaged using MSOT system InVision TF 256 (iThera Medical, Munich, Germany).
Serial slice images were taken in 0.2 mm steps between the diaphragm to the bottom of the kidneys
(40-55 mm) at wavelengths of 680, 710, 730, 740, 760, 770, 780, 800, 850, and 900 nm using 25
averages per wavelength with acquisition time of 10 psec per frame in order to minimize the
influence of animal movement. Images were taken every 8 h for 24 h to track liposome uptake and
accumulation. Excitation of CF-750 liposomes was conducted using a tunable parametric oscillator
pumped by an Nd:YAG laser. The pancreas tumor was identified by a live-feed screen preview
multispectral signal. Video-rate acquisition produced an imaging clip compiled from single-slice

acquisition in less than 1 ms, resulting in an image data rate of 10 frames per second. Image
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reconstruction was conducted using backprojection at a resolution of 75 um. Multispectral
processing was conducted using linear regression (ViewMSOT 3.5). A 3.5mm diameter ellipse

was used for region-of-interest analysis of liposome signal on the tumor, liver, and kidney.

Ex Vivo Imaging of Organs

Mice were euthanized 24 h after liposomal injections via carbon dioxide inhalation. The
pancreas, liver, and spleen were harvested and imaged ex vivo to compare accumulation of naked
and Sdc1 tagged liposomes. The organs were imaged using near-infrared (NIR) fluorescence with

the AMI 1000X at 675 nm excitation and 760 nm emission.
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Results
Western Blot

Western blot analysis was performed to evaluate the expression of IGF1R on the three
different pancreatic adenocarcinoma cell lines (S2VP10L, MiaPaCa-2, and S2013). The head and
neck squamous cell carcinoma cell line SCC-1 served as a negative control (22). As expected,
SCC-1 cells expressed much lower levels of IGF1R than pancreatic cancer lines (Fig. 2A). Less
aggressive MiaPaCa-2 cells also had relatively low IGF1R expression. Highly aggressive and
metastatic S2VP10L and S2013 cells had five- and seven-fold increase of IGF1R expression
respectively compared to SCC-1 cells (Fig. 2B). S2VP10L cells were chosen as the pancreatic cell
line to be used for the remainder of the experiments due to their predictable behavior in vivo and
relatively high levels of IGF1R expression.

Characterization of Liposomes

Liposomes were synthesized to encapsulate CF-750 dye or propidium iodide and tagged
with Syndecan-1. Transmission electron microscopy (TEM) of the liposomes shows the average
size to be 117 nm (Fig. 3C). The size of liposomes observed by TEM is smaller than DLS (129
nm, Fig. 3A), as TEM yields a number-averaged size whereas DLS does a Z-averaged size that
takes into account hydration layers. Based on the low polydispersion index, the liposomes are
uniform in size (Fig. 3A). The liposomes also have a slight positive charge of 0.3 mV (Fig. 3B).
UV-Vis Spectroscopy

The absorption spectrum for CF-750 encapsulated Sdcl liposomes was analyzed using UV-
Vis spectroscopy. The peak absorption of the liposomes was 750 nm, the same as the original dye
(Fig. 4). Thus, encapsulating the dye within liposomes does not change the optical behavior of the

dye.
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Immunocytochemistry

Immunocytochemistry slides of S2VP10L and SCC-1 cells were treated with non-targeted
and Sdcl liposomes containing propidium iodide and imaged using Texas Red, DAPI, and FITC
filters. Fluorescence seen using the Texas Red filter indicates propidium iodide (PI) uptake by the
cell. In IGF1R-positive S2VP10L cells, there was greatly increased uptake of Pl when treated
with Sdcl-tagged liposomes (Fig. 5C) compared to naked liposomes (Fig. 5B). Treatment with
non-targeted liposomes does not result in the intracellular localization of dye, as the green
fluorescence indicates extracellular accumulation (Fig. 5E) rather than intracellular uptake. The
bright yellow areas in Figure 5F indicate locations where red and green light are both present,
suggesting P1 on both the cell surface as well as within the cytoplasm, where it is likely bound to
mitochondrial DNA or free-floating RNA. White areas indicate red, green, and blue co-localization
demonstrating the Pl binding to nuclear DNA. Untreated S2VP10L cells show minimal red
autofluorescence (Fig. 5A) and no green autofluorescence (Fig. 5D).

Propidium iodide, when bound to nucleic acids, displays maximum excitation and emission
values at 538 nm and 617 nm respectively and fluoresces red using the Texas Red filter. However,
Pl in its free form exhibits different optical characteristics: maximum excitation at 488 nm and
emission at 590 nm (37), fluorescing green using the FITC filter. This allows for distinction
between excess dye bound on the cell surface versus internalized dye bound to nuclear or

cytoplasmic nucleic acids.

In Vivo Imaging and Reconstruction

Syndecan-1-tagged liposomes were injected ten days post-implantation of the tumor.

Liposome accumulation in vivo was determined using MSOT imaging every 8 h for 24 h.
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Representative location of organs as seen on the MSOT can be viewed in Figure 6. Liposome
accumulation in the tumor peaked at 8 h post-injection and declined within 24 h (Fig. 7C). The
highest region of photoacoustic signal was between 45 and 46 mm in the mouse, and corresponded
with the location of the pancreatic tumors (Fig. 7A). Low signal intensity was observed in the
spleen and liver (Fig. 7B), indicating significantly more liposomes accumulated in the tumor
versus in the liver and kidney (p<0.05). Furthermore, orthogonal views of the tumor demonstrate
probe accumulation along 3 spatial dimensions, and suggest liposome penetration and

accumulation within the interior of the pancreatic tumor (Fig. 7B).

Ex Vivo Imaging of Organs

Ex vivo fluorescent imaging confirms accumulation of Sdc1-liposomes within organs (Fig.
8). Mice were euthanized 24 h post-liposomal injection. The pancreas, liver, and spleen were
imaged using NIR fluorescent imaging with excitation 675 nm and emission 760 nm. Sdc1-tagged
liposomes bound preferentially to the pancreas tumor with little off-target binding in the liver and

spleen. Non-targeted liposomes accumulated primarily within the liver.
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Discussion

This study investigated the feasibility of using Sdcl-tagged liposomes as a theranostic
nanoparticle for detection and possible treatment of pancreatic adenocarcinoma. By utilizing
fluorescent dyes, liposome specificity and unloading capability was assessed in vitro using
immunocytochemistry. Accumulation time and specificity in vivo were analyzed by injecting the
liposomes into an orthotopic mouse model and imaging using MSOT and ex vivo fluorescence
imaging.

Treatment with liposome-encapsulated therapeutics has been shown to increase
bioavailability of therapeutic agents at the tumor site, reduce off-target toxicity, and increase
circulation time (39-41). Many of these liposomes utilize the Enhanced Permeability and Retention
effect (EPR), a phenomenon wherein particles around 100 nm accumulate in tumors due to leaky
vasculature, to passively target cancerous tissues (38). Sdcl-tagged liposomes were 117 nm in
diameter, theoretically allowing them to diffuse into tumor sites via EPR. However, targeting

IGF1R with the Sdcl ligand utilizes a second mechanism to enhance specificity, active targeting.

Previous studies have shown that attaching a targeting ligand increases tumor targeting and
intracellular uptake in tumor sites when compared to non-targeted liposomes (42). In this project,
Sdcl-tagged liposome and control (untagged) liposome specificities were compared using ex vivo
analysis. Though some control liposomes may have reached the pancreatic tumor due to passive
targeting from EPR and the leakiness of the blood vessels around the tumor, Sdcl-tagged
liposomes showed greater accumulation within the pancreatic tumor and less off-target binding.
These results, congruent with previous findings, suggest that the active targeting of the Sdc1 ligand

contributes most to the specificity of the Sdc1-tagged liposomes.
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Cancer cells treated with targeted liposomes containing chemotherapeutic agents show
enhanced cell death when compared to non-targeted liposomes due to enhanced receptor-mediated
endocytosis (43). This project showed that Sdcl-tagged liposomes are capable of fusing with cell
membranes and unloading their contents into the cell, indicated by the presence of DNA-bound
propidium iodide in S2VP10L cells treated with the liposomes. This result was observed in IGF1R-
positive S2VVP10L cells and not in IGF1R-negative SCC1 cells, suggesting that the Sdc1-IGF1R

interaction facilitates endocytosis.

The specific unloading of liposomal contents to IGF1R-positive cells in vitro and low off-
target binding in vivo demonstrate the feasibility of using Syndecan-1 as a targeting ligand for a
pancreatic theranostic nanoparticle. Because Sdcl-tagged liposomes specifically target and
preferentially release contents to pancreatic adenocarcinoma, encapsulating a drug in these
particles can reduce systemic toxicity, leading to decreased side effects and improved patient
prognosis (8, 12-14). Furthermore, the presence of a contrast agent allows for tracking of liposomal
movement and accumulation and can be used to image pancreatic cancer in earlier stages using

existing ultrasonic methods.

In this study, photoacoustic imaging was used to produce high resolution molecular images
in vivo based on the absorption of contrast agents. It has previously been used to image both
endogenous (such as melanin in the monitoring of melanoma) and exogenous (NIR dyes)
chromophores in the context of cancer (44). Though photoacoustic imaging is not currently widely
used in the clinic, applications of MSOT in clinical settings have begun with the development of
a handheld MSOT system (45). Using MSOT to image theranostic nanoparticles may soon become
a versatile tool in the diagnosis and monitoring of pancreatic cancer by providing a method of

detecting tumors at an earlier stage.
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In conclusion, Syndecan-1 tagged liposomes actively target pancreatic adenocarcinoma
with minimal off-target binding in vivo and are capable of releasing their contents in vitro. Though
this study reveals that Sdcl-tagged liposomes can be useful for imaging pancreatic
adenocarcinoma in a laboratory setting, further work is needed to assess their clinical value. Such
studies should include using clinically viable techniques to image the liposomes evaluating the
therapeutic capabilities of these liposomes. Ultimately these studies may lead to the development

of a theranostic nanoparticle for clinical use.
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Figures

Figure 1. Structure of Syndecan-1 tagged liposome encapsulating either propidium iodide or CF-

750 dye.
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Figure 2. Western blot analysis of pancreatic cell lines S2VP10L, MiaPaCa-2, S2013, and head
and neck squamous cell carcinoma cell line SCC-1. (A) Western blot bands of B-Actin (42 kDa)
and IGF1R (90 kDa). (B) Western blot band intensity dosimetry. The signal intensity of the IGF1R
band was divided by the signal intensity of the B-Actin band to calculate relative abundance.
Relative abundance of IGF1R in negative control SCC-1 cells was approximately 0.06. Pancreatic
cell lines S2VP10L and S2013 displayed relative abundance of IGF1R of 0.32 and 0.42

respectively, a five- and seven-fold increase compared to the negative control.
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Figure 3. (A) DLS measurements to determine the size of the liposomes. The liposomes are
approximately 129 nm in diameter with a polydispersion index of 0.05. (B) Zeta-potential
measurements of the liposomes. Z=0.3 mV. (C) Transmission Electron Microscopy of the

liposomes. The average size of the liposomes as determined by TEM is approximately 117 nm.
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Figure 4. Absorption spectrum for CF-750 encapsulated Sdcl liposomes. The liposomes
demonstrated fluorescence activity with peak absorbance at 750 nm. Encapsulating the CF-750

dye within the Sdcl liposomes did not change the optical activity of the dye.
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Figure 5. S2VP10L cells following 3 h treatment at 400X magnification. All images were taken

with the same exposure times. (A), (B), (C): Texas Red filter only. (D), (E), (F): Texas Red, DAPI,
and FITC (A) Control cells show minimal red autofluorescence. (B) Cells treated with non-
targeted liposomes display faint red signal, corresponding to minimal dye uptake. (C) Cells treated
with Sdcl liposomes show much stronger red fluorescence, indicating uptake of Pl and binding of
Pl to DNA. (D) Control cells with DAPI. (E) Cells treated with non-targeted liposomes. Green
signal is due to unbound PI, showing dye accumulation outside of the cell. (F) Cells treated with
Sdcl liposomes. Yellow signal occurs due to colocalization of red and green fluorescence,
indicating that dye was located both on the cell surface and in the cytoplasm. White signal is

colocalization of red, green, and DAPI signal.

31



Figure 6. Representative locations of organs on MSOT at both 46 and 49 mm.
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Figure 7. (A) Serial slice images of liposomal accumulation taken from 43 to 48 mm (abdomen).

The highest signal intensity of the liposomes was at 45-46 mm. (B) Orthogonal views of the

pancreatic tumor and liposomal accumulation through different anatomical planes. (C) ROI

analysis on liposome signal in various locations over time measured in MSOT a.u.. Bar height

represents the median value and error bars represent the standard deviation throughout the organ.

Peak liposomal accumulation occurred at 8 h post-injection. Significantly more liposomes

accumulated in the tumor versus off-target organs (p<0.05). Representative locations of organs

can be viewed in Supplemental Figure 2.
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Figure 8. Ex vivo fluorescent imaging of the pancreas, liver, and spleen 24 h post-injection. Sdcl
liposomes accumulated in the tumor with very little off-target binding in the liver and spleen. Non-

targeted liposomes tend to accumulate in the liver with low signal in the tumor.
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