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Summary

A key factor limiting the
effectiveness of radiation
therapy is normal tissue
toxicity, and recent preclini-
cal data have shown that
ultra-high dose rate irradia-
tion (>50 Gy/s, “FLASH”)
potentially mitigates this ef-
fect. However, research in
this field has been strongly
limited by the availability of
FLASH irradiators suitable
for small animal experi-
ments. We present an
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Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue
toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation
(>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field
has been strongly limited by the availability of FLASH irradiators suitable for small
animal experiments. We present a simple methodologic approach for FLASH electron
small animal irradiation with a clinically available linear accelerator (LINAC).
Methods and Materials: We investigated the FLASH irradiation potential of a Varian
Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed
detailed FLUKA Monte Carlo and experimental dosimetric characterization at multi-
ple experimental locations within the LINAC head.
Results: Average dose rates of �74 Gy/s were achieved in clinical mode, and the dose
rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm
field size with 90% homogeneity throughout a 2-cm-thick volume.
Conclusions: We present an approach for using a clinical LINAC for FLASH irradi-
ation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC,
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experimental platform using

a clinical linear accelerator
capable of delivering
FLASH irradiation in excess
of 200 Gy/s with excellent
dosimetric properties.
with excellent dosimetric properties for small animal experiments. This will allow
for increased availability of FLASH irradiation to the general research community.
� 2016 Elsevier Inc. All rights reserved.
Introduction

The use of very high dose rate treatments in radiation therapy
is steadily increasing owing to the technical developments
and implementations in recent years (1). Techniques such as
flattening filter free beams allows for up to 4 times faster
treatment compared with standard irradiation protocols (1),
with average dose rates of up to 0.5 Gy/s and instantaneous
dose rates of >1.7 � 104 Gy/s within a pulse (2). In proton
therapy with pencil beam scanning, average dose rates of
up to 200 Gy/s within a Bragg peak are readily available.
The use of these high dose rate treatments has, however,
raised concern about the possible radiobiologic conse-
quences affecting the overall response to therapy.

Early studies conducted in the field of very high and ultra-
high dose rate irradiation have occurred in an in vitro setting,
primarily because of technical difficulties with delivering
such dose rates with field sizes large enough for animal
irradiation. These in vitro studies have shown little or no
differential effect between ultra-high dose rate and conven-
tional irradiation (1, 3-8). However, recent results using dose
rates in the range of 40 to 60 Gy/s (FLASH) in the in vivo
setting have been markedly different. In those studies,
FLASH irradiation of lung tissue showed clear benefits, with
reduced normal tissue toxicity but keeping the tumor
response constant (9). The underlying mechanism for this
response is unknown, and more research is clearly needed.

To study these effects, FLASH irradiators with the
capability of delivering dose rates of >50 Gy/s need to
become more accessible to the general research community.
Previously developed small animal irradiation systems have
primarily focused on the use of x-ray tubes or high activity
radionuclide sources for the delivery of the prescribed dose
(10-13). With these techniques, highly conformal dose
distributions are available; however, the high dose rates
needed for FLASH exposures are not practical. Further-
more, x-ray or gamma irradiation in the megavoltage range
gives a highly heterogeneous dose distribution in small
animals because of the substantial build-up effects. Instead,
electrons in the megaelectron volt range could be used
owing to the greatly decreased dose build up and a more
homogeneous dose with depth in the mouse setting when
using single beam irradiation (14).

In the present study, we describe a technique for using a
clinical linear accelerator (LINAC) for electron FLASH
irradiation of small animals. Our system has the advantage
of being an adaptation of an existing commercial device
with easy set up and without the risk of disturbing normal
clinical operations. Furthermore, the beam energy permits a
more homogeneous depth dose than the systems used to
date. A dosimetric characterization and Monte Carlo (MC)
simulations are presented for 2 states of the machine: with
normal clinical operation settings and after tuning for
maximum dose rate delivery.

Methods and Materials

AVarian Clinac 21EX (Varian Medical Systems, Palo Alto,
CA) was used to investigate the high dose rate potential of a
clinical LINAC. Three locations within the head of the
machine were assessed for small animal irradiation: the ion
chamber, positioning mirror, and inner jaws (Y jaws;
Fig. 1). During the assessments, the gantry was at a 180�

angle (beam directed vertically up; Fig. 1A).

Film dosimetry

The field characteristics such as beam profile and depth dose
were measured using Gafchromic EBT2 films (Ashland Inc,
Covington, KY). In clinical mode, the electron energies of 9
and 20 MeV were investigated with maximum dose rate
settings, corresponding to w2500 (in high dose total skin
electron [HDTSE] mode) and 1000 MU/min at reference
conditions (at dose maximum, Source to Surface Distance
(SSD) Z 100 cm) for the 9- and 20-MeV electron beams,
respectively. The films were positioned between polystyrene
slabs at a depth of 0, 0.5, 1, 1.5, and 2 cm at the position of the
ion chamber, at the center of the positioning mirror, or at the
inner jaws (Fig. 1). The total thickness of the phantom was
2.5 cm. Three independent measurements were taken at each
position. No collimation of the beamwas implemented during
these measurements. The films were scanned 24 hours after
exposure using a Perfection V500 flatbed scanner (Epson,
Long Beach, CA) with 72-dpi resolution, and the net optical
density was calculated. Calibration films were generated with
a 16-MeV electron beam at the dose maximum depth, with
100-cm SSD and a 15 � 15ecm field size. Output measure-
ments of 50 to 5000 MU were generated, and the net optical
density data were fitted to a 5 degree polynomial fit.

MC simulations

A realistic geometry of the Varian Clinac 21EX was
modeled in a set of simulations performed with the MC
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Fig. 1. The field characteristics were determined at the position of the ion chamber, mirror, and inner jaws (Y jaws). (A)
Photograph of the Varian Clinac 21EX in the 180� position, (B) generated Monte Carlo geometry model of the head of the
linear accelerator, (C) animal jig used for mouse immobilization and setup, (D) photograph into the head of the linear
accelerator with lead sheets and animal jig at the position of the mirror, and (E) 10-mm-thick lead sheets used for abdomen,
thorax, and brain irradiation. Abbreviation: MLC Z multileaf collimator.
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code FLUKA (15, 16). The created geometry included all
the components that interact with the beam (ie, the vacuum
window, scattering foils, ionization chamber, mirror, and
jaws; Fig. 1B, Supplementary Table 1 (17)). The generated
model was verified against the experimental data and was
then used to evaluate the potential modifications for
exploring new machine layouts. Also, the effect of the
increased dose rate and its impact on the ion chamber was
investigated.

Animal setup

At the position of the mirror, platforms were constructed
for animal irradiation (Figs. 1D and 1E). Platforms were
constructed with built-in collimation for abdomen, thorax,
and brain irradiation, and the platforms were made from
10-mm-thick lead. Furthermore, an animal immobilization
device (animal jig) was constructed to position the mouse
with good reproducibility relative to the collimator plat-
forms (Fig. 1C). Images from kilovoltage x-ray simulation
of the fields were taken using a Spectral Ami-X imaging
platform (Spectral Instruments Imaging, Tucson, AZ) using
C57BL/6 mice (Charles River, Wilmington, MA). All ani-
mal procedures where approved by the Stanford University
Institutional Animal Care and Use Committee (IACUC).

Tuning

Tuning of the LINAC required the use of a spare 20-MeV
program printed circuit board (Varian Medical Systems),
which was used to custom configure the control parameters,
including the pulse forming network voltage, injector cur-
rent, dosimetry calibration, and beam steering. The stan-
dard 20-MeV program printed circuit board was removed to
preserve the clinical settings, and clinical treatments on the
LINAC were halted for the entire duration of the experi-
ments and until after a full annual quality assurance pro-
cedure had been completed to verify the clinical
performance parameters. The waveform characteristics,
including the gun pulse waveform and the automatic fre-
quency controller trigger pulse, were measured using by an
oscilloscope (Rigol, Beijing, China).
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To allow for proper tuning, the dosimetry and posi-
tioning servos were disabled owing to the saturation effects
in the internal ion chamber. The beam tuning used pulse
repetition rate setting 1 as the starting point (Table E2;
available online at www.redjournal.org). Once tuned, the
dose rate could be further scaled in a straightforward way
by setting a different repetition rate. The LINAC was turned
on, and the gun current and radiofrequency driver were
manually adjusted to find the maximum dose rate. Verifi-
cation of the dose/pulse and field characteristics were per-
formed by pinpoint ion chamber (PTW, Freiburg, Germany)
and Gafchromic film, as described previously.

The beam was controlled using an Arduino Uno mi-
crocontroller (Arduino Uno; available at http://arduino.cc/
en/Main/ArduinoBoardUno) connected to the gating inter-
face, which allowed for a consistent and repeatable near-
real-time control of the LINAC (Fig. E1; available online at
www.redjournal.org). The Arduino Uno was programmed
to open or close a dry-reed relay to switch the gating
control on or off.
Results

Field characteristics

The field characteristics in the clinical setting were inves-
tigated for 2 energies (9 and 20 MeV) at 3 different posi-
tions: the ion chamber, mirror, and inner jaws. The dose
rate decreased from 74 Gy/s to 5.5 Gy/s at 1-cm depth
when moving from the position of the ion chamber to the
position of the inner jaws for the 9-MeV HDTSE electron
beam (Table 1). A similar percentage of reduction was also
found for the 20-MeV electron beam. With an increased
distance from the virtual source position, both the 90% and
50% field diameter increased (Table 1 and Fig. 2A-F).
Table 1 Dose rates and field dimensions

Position Average dose rate (Gy/s)

Ion chamber
9-MeV HDTSE (400 nA)y 74 � 0.66
20 MeV (110 nA) 22 � 0.24

Mirror
9 MeV HDTSE (400 nA) 15 � 0.54
20 MeV (110 nA) 5.4 � 0.04

Inner jaws
9 MeV HDTSE (400 nA) 5.5 � 0.085
20 MeV (110 nA) 1.8 � 0.026

Abbreviation: HDTSE Z high dose total skin electron.

Measured dose rates and field dimensions at 1-cm depth at the position of the

the ion chamber using 9-MeV HDTSE (400 nA average current). Decreased d

(mirror and inner jaws).

* Instantaneous dose rate determined from measured average dose rate with
y Average current.
The percentage depth dose (PDD) was relatively similar
for the 2 energies (Figs. 2G and 2H). At the position of the
inner jaws, the PDD increased slightly or remained constant
with depth for 9 and 20 MeV, respectively. At the position
of the mirror, the PDD decreased only slightly with depth
for both energies. At the position of the ion chamber, rapid
dose falloff occurred, with >30% reduction in dose at the
2-cm depth compared with the surface dose. This identified
the position of the mirror as optimal for evaluating the
dosimetry of organ-specific shielding.

MC results

MC simulations were performed for the 9- and 20-MeV
electron beams, and the dose profiles were recorded at the
position of the ion chamber, mirror, and inner jaws. The
comparison between the simulated and experimental data
showed full agreement for all energies and distances from
the virtual source, validating the geometry model used for
all MC simulations (Fig. 2A-F).

In the simulations for the modified layout, the scattering
foils for the 9-MeV beam were used with a 20-MeV beam.
The results showed that a marked increase in the dose rate
could be achieved using scattering foils with a thinner
thickness (Fig. 3A and Table E1; available online at www
.redjournal.org). A dose rate increase of >300% was
found, with the energy deposited (W/cm3) in the entrance
window of the ion chamber only increased by 25% (Figs.
3B and 3C). However, the usable field size was drasti-
cally reduced.

Organ-specific shielding

The field characteristics when applying shielding to irra-
diate specific volumes showed flat profiles for all 3 field
sizes at the position of the mirror (Fig. 4). The PDD was
affected by applying lead sheets, and for the abdomen and
Instantaneous dose rate
(Gy/s)*

Field diameter (mm)

90% 50%

82,000 � 730 9.6 � 0.23 36 � 0.35
25,000 � 260 11 � 0.51 33 � 0.17

17,000 � 600 49 � 1.2 77 � 1.1
6000 � 48 46 � 1.4 65 � 0.40

6100 � 95 74 � 3.1
2000 � 29 82 � 2.0

ion chamber, mirror, and inner jaws. The highest dose rates were found at

ose rates and increased field sizes were found at the more distant levels

5-ms pulse length (180 Hz).

http://www.redjournal.org
http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.redjournal.org
http://www.redjournal.org
http://www.redjournal.org
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Fig. 2. Dose profiles at a 1-cm depth at the position of the ion chamber (A, D), mirror (B, E), and inner jaws (C, F) for
9- and 20-MeVelectron beams. Experimental data are shown as a solid black line, and the Monte Carlo simulation are shown
in red. Also shown is the measured percentage depth doses (PDDs) at the different positions for the 9- and 20-MeV electron
beams (G, H). The position of the mirror provided the highest dose rate for a practically usable field size and depth dose for
small animal experiments. Abbreviation: HDTSE Z high dose total skin electron. (A color version of this figure is available
at www.redjournal.org.)
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thorax irradiation, a dose falloff of w13% at a depth of
2 cm compared with entrance dose was found. For the
brain, a dose falloff of w21% was found.
Tuned field characteristics

After tuning, the dose profiles at all positions were found to
be slightly asymmetric (Fig. 5), with �3% variation across
the field. No change in the PDD was found between the
pre- and post-tuning states. The dose rates measured
increased by a factor of 13 and 40 after tuning compared
with the 9- and 20-MeV pretuning beams, respectively. The
measured average dose rates at 1-cm depth varied from
900 Gy/s at the position of the ion chamber to 70 Gy/s at
the position of the inner jaws. No statistically significant
change in field size was found between the pre- and post-
tuning states.
Discussion

Here we present a methodologic approach for using a
clinical LINAC for FLASH irradiation of small animals. In
our approach, we used a Varian Clinac 21EX (Varian
Medical Systems) and evaluated field characteristics at
different positions, with and without tuning, to find the
optimal position in terms of field size, dose rate, and dose
falloff. The dosimetric characterization in the present study
was performed with Gafchromic EBT2 film, which has
previously been shown to be practically independent of
energy in the range of 1 to 100 MeV and dose rate

http://www.redjournal.org
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�9.0 � 1012 Gy/s (the maximum dose rate per pulse in the
present study was 1.7 � 106 Gy/s) (18-20).

Electrons are preferred to photons in the present setup
for several reasons. First, the depth dose profile for elec-
trons is superior to photons in small animal irradiation
when using single beam irradiations. At standard conditions
(ie, SSD at 100 cm with a 10 � 10 field), photons in the
megavoltage range show a very steep dose build-up up to
the dose maximum at around a 3-cm depth (21). This would
result in a heterogeneous dose distribution in the irradiated
mouse if bolus material were not applied. In contrast, for
electrons, the entrance dose is at w85% and >95% of the
dose maximum for 9- and 20-MeV electrons, respectively
(21, 22). This allows for a more homogeneous dose dis-
tribution when irradiating small animals. Furthermore, with
the very short SSD in the current setup, the dose buildup
effect becomes less important compared with the inverse
square effect, especially at the position of the ion chamber.
Second, it was assumed that the tuning process when using
electrons would result in a greater dose rate compared with
using photons owing to the large loss of charge in the target
in photon mode (23). The tuning process was limited to the
20-MeV beam because of the improved depth dose char-
acteristics in small fields with higher energy (24, 25).

The usable field size, in the present report defined as the
area receiving >90% of the maximum dose, increased with
the increased distance from the virtual source. At the po-
sition of the ion chamber, the usable field size was w1 cm
in diameter for the 2 energies, which had increased to
>7 cm at the position of the inner jaws. For small animal
(mouse) applications, a field size of 1 cm will allow for
single organ irradiation. However, at the position of the ion
chamber, a very strong dose falloff with depth was found,
primarily due to the close proximity to the virtual source of
the LINAC. This would result in a dose falloff of >30%
over a distance of 2 cm. Therefore, the position of the
mirror might be considered a reasonable compromise for
animal irradiation owing to the tradeoff between the size of
the usable field, dose rate, and dose falloff with depth.

A potential strategy to increase the dose rate is to use
different scattering foils for different energies than what is
normally used clinically. For each energy, a different set of
thin foils is used to scatter and shape the beam: the foils are
made of aluminum and tantalum, with thicknesses ranging
from tens of microns to 1 mm. The possibility of using
thinner scattering foils for the highest energy (ie, 20 MeV)
was explored, and the results showed that an increase of
>300% could be achieved without seriously increasing the
energy deposited in highly valued components such as the
ion chamber. However, this increase in dose rate would
come at the cost of the field size. Thus, the field size at 90%
of the maximum dose decreases from 5 cm to <2 cm,
restricting the possible use of this beam setup for larger
organ irradiation.

The procedure to achieve the higher dose rate was ulti-
mately performed by increasing the gun current and the
radiofrequency power, together with identifying the location
in the head of the machine, to provide the optimal combina-
tion of dose rate and dose homogeneity across practical field
sizes and depths. Owing to the saturation effects in the ion
chamber, the delivered dose could not be controlled reliably
usingmonitor units, and anArduinoUnomicrocontroller was
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constructed and connected to the gating interface. The mi-
crocontroller was programmed to open or close a dry-reed
relay to switch the gating control on and off. The internal
clock of the Arduino board has a frequency of 16 MHz, and
the timing accuracy of the Arduino board was tested with an
oscilloscope. It was found that the header pin toggle was on
the scale of a few microseconds. The limiting case of beam
shutoff was the switching time of toggling the dry-reed relay,
and this was measured to be w1 ms, much shorter than the
minimum time between pulses (5.5 ms; Table E2; available at
www.redjournal.org). However, because of the gating inter-
face behavior, it was observed that the dosemeasured during a
fixed timing interval could vary. A small difference was
attributed to having an extra pulse let through (the LINAC
polling clock for gating the beam could be out of syncwith the
gating interface being switched open, thus allowing an extra
pulse to be emitted). It was also observed that the initial pulses
generated after beamingonvaried in size (dose/pulse) and that
“full” pulses were produced only after 2 to 4 pulses had been
delivered. This variation was attributed to the nature of the
feedbackmechanismassociatedwith the automatic frequency
control. Therefore, the overall uncertainty in dose delivery
correlated almost exclusively with the individual dose per
pulse error of the machine.

To the best of our knowledge, only 2 other research
groups are studying FLASH small animal irradiation using
custom experimental LINACs able to deliver dose rates of
>50 Gy/s (9, 26, 27). Similar to our proposed system, these
systems also use electrons but with an energy range of 4.5
to 6 MeV. In our system, using 20-MeVelectrons, we found
a very low dependence of absorbed dose with depth,
providing the advantage of a more homogeneous dose in
the irradiated small animal compared with lower beam
energies.

A number of features can be implemented to further
increase the reproducibility of the dose delivery. In the
current setup, an Arduino board, connected to the gating
interface, was used instead of the built-in ion chamber
owing to the recombination effects therein. This allowed us
to have reproducibility of �1 pulse due to internal un-
certainties and the lag time of the gating control. The
implementation of a toroid with real-time measurements of
the electron beam before exposure of the small animal
would allow for a quick read out of the beam charge, and

http://www.redjournal.org
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Fig. 5. (A) Dose profiles at 1-cm depth, (B) percentage depth doses (PDDs) at different positions, and (C) measured dose
rates and field dimensions at 1-cm depth after tuning of linear accelerator, together with the standard deviation of the
measured values. A minor asymmetric profile was observed after tuning owing to failure to update the steering coil settings
between the clinical and tuned state. The maximum dose rate of 900 Gy/s was observed at a 1-cm depth at the position of the
ion chamber. The dose rate was 220 Gy/s at the position of the mirror, at which the field size and PDD were most relevant for
small animal irradiation experiments.
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the beam off could be controlled using a microcontroller
directly connected to the LINAC control computer.

Conclusions

The field of ultra-high dose rate radiobiology is still in its
infancy; however, recent preclinical data showing a
reduction of normal tissue toxicity but maintaining the
same tumor cell killing per dose could revolutionize the
field of radiation oncology when ultimately translated to
human treatment, the technology for which we are also
developing (28, 29). However, the ability to study the
biologic response to FLASH radiation therapy has been
limited by the lack of availability of experimental machines
to deliver dose rates >50 Gy/s. Through the proposed
method, preclinical research in the field of FLASH can
become available to a broader research community, given
the more general accessibility of clinical LINACs. The
method requires only relatively simple modifications to a
clinical LINAC and results in practically usable dose rates
exceeding 200 Gy/s without extended down times from
clinical service.
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