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ABSTRACT

Oncolytic viruses infect, replicate in, and kill cancer cells, leaving normal cells unharmed; they
also recruit and activate immune cells against tumor cells. While clinical indications for
viroimmunotherapy are growing, barriers to widespread treatment remain. Ensuring real-time
tracking of viral replication and resulting anti-tumor immune responses will overcome some of
these barriers and is thus a top priority. Clinically optimizing trackability of viral replication will
promote safe dose increases, guide serial dosing, and enhance treatment effects. However, viral
delivery is only half the story. Oncolytic viruses are known to upregulate immune checkpoint
expression thereby priming otherwise immunodeficient tumor immune microenvironments for
treatment with checkpoint inhibitors. Novel modalities to track virus-induced changes in tumor
microenvironments include non-invasive measurements of immune cell populations and
responses to viroimmunotherapy such as: 1) In situ use of radiotracers to track checkpoint
protein expression or immune cell traffic, and 2) Ex vivo labelling of immune cells followed by
nuclear medicine imaging. Herein, we review clinical progress toward accurate imaging of
oncolytic virus replication, and further review current status of functional imaging of immune

responses to viroimmunotherapy.

KEYWORDS: Oncolytic viral therapy, theranostic imaging, viroimmunotherapy
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INTRODUCTION

Oncolytic viruses (OVs) are a powerful tool of immunogenicity and are capable of conferring
anti-tumor immunity even to disseminated cancers. While one virus is currently FDA-approved
for melanoma treatment, barriers remain to the widespread use of viroimmunotherapy in solid
tumor treatment algorithms. With an average time to response of approximately 4 months as seen
in the OPTIM trial prompting talimogene laherparepvec (T-Vec) approval,’ oncolytic
virologists and medical oncologists alike are left to guess whether or not continued OV or other
cancer treatment dosing will benefit the patient. This is especially harrowing in the setting of
pseudo-progression or progression prior to response, which can occur in up to 49% of
responders.*® In many cases, we simply continue to treat until a tumor marker rises, or an image
demonstrates definitive tumor progression, unaware if we have benefited the patient with the
preceding months of therapy. The inability to non-invasively measure treatment progress in real-
time is a barrier shared by OVs, immunotherapies, and traditional cytotoxic treatments alike.
Non-invasive diagnostics that can provide valid feedback would save money, time, and toxicity

for many.

Attempts at optimizing clinical imaging of viral replication in tumors have been ongoing over the
last 20 years with limited success.® Real-time imaging allows OVs to meet their full theranostic
potential. Indeed, many OVs currently in clinical testing accommodate transgenes encoding
“payloads” that include enhancement of immunogenicity and also reporter genes that allow for
real-time tracking of viral replication. Given that many OVs are tumor-tropic, viral imaging may
elucidate previously undetected tumors. Ultimately, imaging of OV trafficking and viability

could vyield truly personalized medicine by guiding variables like future serial injections for
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intratumoral models and dose increases for systemic delivery. However, despite years of clinical
development spanning disease and vector types, optimal dose timing and the best vector and

dosing strategy for each specific tumor remains a challenge.’

Thus far, there are two predominant types of real-time OV imaging: optical and deep tissue
functional imaging. Clinically, optical imaging allows direct visualization of fluorescence. In the
operating room, special laparoscopes can elucidate fluorescent tissue within body cavities; In the
clinic, lamps can reveal fluorescent epidermal or mucosal surfaces.® Functional viral imaging
measures isotope uptake as a surrogate for viral replication with scans like positron emission
tomography (PET) or single photon emission computed tomography (SPECT). Of the reporter-
genes in OV clinical trials, human sodium iodide symporter (hNIS) is the most prominent.’

However, only a select few investigators have published actual human images.?%*°

While critical to the success of the field, tracking viral delivery is only half the story. Reliable
non-invasive characterization of virally-induced anti-tumor immune responses also remains
elusive. In vivo and ex vivo techniques for radiolabeling immune cells, cytokines, and co-
stimulators or co-inhibitors are rapidly evolving arenas of clinical imaging. To most
comprehensively understand the anti-tumor effects of viroimmunotherapy without invasively
sampling tissue, non-invasive imaging should include viral tracking, measurement of immune
checkpoint expression, and tracking immune cells into tumors. Herein, we review progress and

promise of comprehensive non-invasive imaging of viroimmunotherapy.

Review of published clinical real-time viral tracking
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As demonstrated by our group and others, real-time tracking of viral replication demonstrates
tumor tropism whether viruses are administered intratumorally (IT), intravenously (I1V), or
intraperitoneally (IP) (Figure 1).2*'” These experiments were confirmed in previously published
experiments using HCT116 xenografts,"” and also as shown here using HT-29 xenografts
infected with a recombinant orthopoxvirus platform (CF33) with tk deletion encoding either

human sodium iodine symporter (CF33-hNIS) or firefly luciferase (CF33-Luc).'®*’

Upon comprehensive English literature review from 1995 to present, many abstracts and posters
referencing images on replicating oncolytic viruses were found. However, a surprising paucity of
peer-reviewed publications showed images of non-invasive viral replication tracking. The
authors were only able to identify six peer-reviewed publications with images of viral
replication: four studies demonstrated successful tracking of NIS-encoding OVs via 1-123
SPECT/CT, one study used ‘®F-labeled penciclovir analogue, and one used the '**I-labeled
substrate for HSV-1-tk to monitor thymidine kinase gene expression (Table 1). In each of the
described studies, the success of imaging appeared dose-dependent. In the NIS-based studies,
images appeared most consistently 7-8 days after treatment.'>? In the tk imaging papers, Jacobs
et al. show [***I]-FIAU retention 68 hours after injection whereas Penuelas et al. examined [¢F]-
FHBG signal 1 week post-injection.***® In the remaining trial referenced in Table 1, investigators
of a GFP-encoding vaccinia used fluorescent lamps in clinic to examine pox-like rash occurring
in treated patients with head and neck carcinomas. While this does not represent imaging of viral
replication in tumors, the investigators emphasize that such a rash confirms successful systemic

viral replication.®
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Clinical OV image optimization has remained a challenge despite numerous creative adjuncts
like oral contrast,'® chemo-tagged radiotracers, and novel highly-specific tracers.*® Moreover, in
addition to the expected variability of viral replication between tumor types, even similar types
of tumors in identical anatomic locations exhibit differing can vary. For instance, Rajecki et al
treated a cervical cancer patient with Ad5/3-A24-hNIS, acting based upon the findings of Barton
et al. using Ad5-yCD/mutTKsraerep-hNIS in prostate cancer.”*® Unfortunately, Rajecki and
colleagues saw no evidence of OV-based signal. This may have been due to their study of both a
different vector with hNIS on a different promoter, and also an entirely different disease type.
Groups using hNIS-based imaging have seen more consistent results at higher doses and with
more uniform disease states as detailed in Table 1. However, published images demonstrate that
further optimization is needed to achieve clinical relevance. Perhaps clinical optimization using
a more potent and rapidly replicating virus platforms like CF33 or herpes simplex viruses
encoding hNIS will render consistent high-yield imaging to guide future therapies. If properly
established, real-time non-invasive deep tissue imaging will enable more rapid incorporation of

imageable viroimmunotherapies into solid tumor treatment schema.

Viral replication co-localizes with tumor T cell infiltration

To further assess whether non-invasive viral imaging can serve as a linear surrogate for both
viral replication and T cell infiltration, we confirmed that immunofluorescent vaccinia staining
corresponds to immunohistochemical (IHC) staining showing T cells co-localizing with viral
infection (Figure 2A&B). Moreover, in subsequent experiments, we evaluated immune cell
infiltration and confirmed these IHC findings quantitatively using FACS of tumor lysates to find

that CD8+ tumor infiltration is higher in viral-treated tumors (Figure 2C). We and others have
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shown that CD8+ T cells co-localize to actively replicating virus.”* This is aligned with findings
by Sampath et al. which showing direct synergistic interactions between an enveloped vaccinia
virus and immune cell components.”” While co-localized viral particles and immune cells
suggest that non-invasive imaging of viral replication corresponds to immune cell trafficking,

only by specifically imaging immune cells or invasively sampling tumors can we confirm this.

Imaging virally-induced immune checkpoint expression

Our group and others have demonstrated upregulated PD-L1 in tumors following poxvirus
infection.?*?* Many feel such upregulation mediates the success of combination therapies pairing
oncolytic viruses with checkpoint inhibitors in advanced solid tumors.? Others feel that viruses
pair well with checkpoint inhibitors simply because they release inflammatory damage- and
pathogen-associated proteins into the tumor microenvironment, thereby recruiting and activating
immune cells in the tumor microenvironment.?® In order to find the most effective place in
treatment algorithms for oncolytic viruses amid the already tumultuous sea of immune
checkpoint inhibitors available, we must fully characterize both checkpoint expression and
immune cell trafficking in real time. While reliably imaging checkpoint expression after
immunotherapy treatment of any sort is a tall order, there is some progress with radiolabeled
antibodies to a variety of checkpoint proteins (Figure 3). Indeed, one can image any point along
the continuum of activating a T cell as it recognizes tumor, from radio-labeled antibodies to
cytokines like IFNy, cluster of differentiation (CD) cell-surface proteins like CD8, or markers of
activation like granzyme B. At present, in vivo imaging of this nature is plagued by non-specific
background uptake. That said, some progress is being made with highly specific radiotracers and

anti-bodies.?’
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Current clinical progress in tracking immune responses to oncolytic virus

To date, imaging of immune responses to viral therapy are sparsely explored. Weibel et al. in
2013 correlated *°F-Magnetic Resonance Imaging (MRI) with CD68 staining on IHC in
xenograft models of human melanoma and breast cancer infected with an oncolytic vaccinia
virus GLV-1h68.® These macrophage-dense regions within a tumor tended to surround virally
infected areas of tumor as confirmed with immune-fluorescent staining. While this suggests that
YE_.MRI could serve as a surrogate for tracking immune response to treatment, clinical
translatability of these findings in nude mice is questionable. To take the next steps as a field in
imaging immune responses to oncolytic viral therapy, we will need to draw from the experiences

of our adoptive immune cell colleagues.

Ex vivo radiolabeling of T cells holds promise to help track efficacy of immunotherapies (Figure
4) in terms of immune cell recruitment.®® While this is most broadly explored to track T cells
bearing radiolabeled chimeric antigen receptors, simple co-culture of T cells with radioisotope is
also an effective means of tracking tumor infiltration. Perhaps the most clinically advanced form
of in vivo targeting and also adoptive cell radiolabeling is found in Zirconium (89-Zr).*° Notably
more specific than other tracers such as 18-F given its independence from glucose metabolism,*
89-Zr also has the advantages of a long half-life (3.3 days) making it helpful for tracking cells
over at least several days with serial CT-PET imaging.*® Moreover, its relatively lower positron
energy renders enhanced resolution of PET images. While other more specific tracers like
Copper are also being studied, the half-life is comparatively short and background signal also

prohibitive in some cases. ®Zr-labelled T cells have been successfully employed in clinical
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settings to image CAR-T cell trafficking to non-small cell lung cancer (NSCLC), prostate cancer,
melanoma, and advanced gastrointestinal malignancies as detailed in Table 2.7"** While the
alternative of MRI using superparamagnetic iron oxide nanoparticles that are ingested by cells
intended for tracking, this is much more cumbersome and lengthy image acquisition process that
is also highly dependent upon cell function rather than precise labeling as would be required for

comprehensive imaging of viroimmunotherapy.

The authors propose that an ideal strategy toward comprehensively imaging responses to
oncolytic viroimmunotherapy would take into account the “big picture” of a tumor
transformation following viral infection, including: 1) immediate changes to cancer cells upon
viral entry and replication, 2) initial changes to surrounding tumor immune microenvironment,
and 3) finally alterations in tumor immune cell infiltration (Figure 5a). Each of these three
components of virally-mediated tumor transformation is imageable by tracking virus to tumor
with reporter genes, then flagging upregulation of immune checkpoints, and monitoring effector
immune cell traffic in treated tumors (Figure 5b). In so-doing, investigators would be able to
amend treatment courses in real-time to optimize anti-tumor immune responses and prolong

patient survival.

CONCLUSION

Herein, we have reviewed the published clinical experience with functional viral imaging and
demonstrate additional possible future directions for tracking viral replication in clinical studies.
We further reviewed current progress and challenges as well as strategies for future

comprehensive imaging of immune responses to oncolytic viral treatment. In conclusion, this
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paper emphasizes the importance of continued optimization of preclinical and clinical protocols
to visualize viral replication in real-time. While many trials are currently testing imaging
endpoints, we must incentivize further investigations to both speed regulatory approvals and
incorporate viroimmunotherapy into treatment algorithms. In this era of pay-to-play
immunotherapy, patients, clinicians, and payers alike should place high value on real-time proof
of viral tumor tropism and therapeutic benefit. Strategies to non-invasively and reliably image
viral delivery, checkpoint expression, and immune cell trafficking will be critical to advancement

of the field.

MATERIALS AND METHODS

Literature review

PubMed and ClinicalTrials.gov were queried for search terms including but not limited to
oncolytic virus, SPECT, PET, imaging, NIS, GFP, optical imaging, functional imaging, tracking.
All active clinical trials involving oncolytic viral imaging were reviewed. Trial vectors and key
words were used in PubMed to search for any publications of results. Many trials are still

accruing.®®

Identified publications were included in Table 1 only if a clinically-generated
picture was a figure in the manuscript. There were many published abstracts without pictures

available, and we anticipate images will be forthcoming from several groups in the near future.

Virus chimerization and hNIS or Fluc cloning
The chimerization, cloning, competitive selection, and sequence of CF33 backbone virus
have been described previously.®* Insertion of the hNIS expression cassette or firefly luciferase

under the control of the vaccinia H5 promoter or synthetic early (SE) promoter at the J2R locus

10
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has also been described,’”*® as has the deletion of the F14.5L gene,*” and insertion of the anti-

PD-L1 transgene at the F14.5L locus.**

In vitro luciferase activity was confirmed by infecting HCT-116 cells with CF33-Fluc at
varying multiplicities of infection (MOIs). Rapid luciferase activity was observed after 24-hours
by adding 100x luciferin solution (prepared as below) directly to wells and imaging after 10

minutes with Lago X optical imaging system (Spectral Instruments Imaging, Tucson, AZ).

Cell lines

HT-29 (RRID:CVCL_0320), HCT116 (RRID:CVCL_0291) and African green monkey kidney
fibroblasts - CV-1 (RRID:CVCL_0229) cell lines were purchased from ATCC (Manassas,
Virginia). All Human colorectal cell lines were maintained in McCoy’s 5A medium (Gibco,
Gaithersburg, MD) and CV-1 cells were maintained in Dulbecco’s modified Eagle’s medium
(Corning, Corning, NY). MC38 and MC38-Luc cells were a kind gift from Dr. Laleh Melstrom’s
laboratory (City of Hope, Duarte, CA). MC38 and MC38-Luc cells were maintained in DMEM.
All cells were supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic
solution, both purchased from Corning (Corning, NY). The cells were maintained in a
humidified incubator at 37°C and 5% CO,. Efforts were made not to perform experiments past

15 passages of cells. All cell lines were tested for mycoplasma before each experiment initiation.

PET imaging

In vivo 1-124 uptake measured by PET/CT

Mice bearing HT-29 flank xenografts were divided into imaging and control groups (n=4

mice). To analyze tumor imageability after intratumoral delivery, mice received an intratumoral

11
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injection of 10* pfu per tumor of either CF33-hNIS, CF33-Fluc or PBS when tumors reached
100mm?. At 7, 14, and 21 days post-viral injection, mice in each group received 200uCi of 1-124
injected per tail vein. The radioisotope was obtained from the City of Hope Small Animal
Imaging Core Radiopharmacy. PET imaging was then obtained 2 hours following injection using
the small animal PET scanner (microPET R4, Siemens Corporation) which provides fully 3-
dimensional PET imaging with a spatial resolution of better than 2.0 mm and quantitative
accuracy for measurement of tissue activity concentration on the order of 10%. Quantitative
accuracy is supported by scatter, dead time and measured attenuation corrections. The system
includes a fully developed image analysis package that supports volumetric regions of interest
and the fusion of PET with co-registered anatomic CT. To protect mouse thyroids from
radioiodine ablation, all mice received T4 supplementation with 5mg levothyroxine/L of water

beginning one week before radioiodine administration.

Luciferase imaging

Firefly luciferin solution was prepared as per manufacturer’s instruction (PerkinElmer, Waltham,
MA). Imaging was obtained after intraperitoneal delivery of luciferin in a control mouse and all mice
treated with CF33-Fluc using Lago X optical imaging system (Spectral Instruments Imaging, Tucson,

AZ) after 15 minutes incubation.

Tumor models and virus dosing

For the HCT116 xenograft model, 2-3 x 10° of HTCT116 cells were injected into 6-8 week old
female nude mouse flank using a total of 100 pL PBS containing 50% matrigel for each tumor.
When the average tumor size approached 150 mm?®, mice were divided into experimental groups

and treated with 10° pfu of CF33-Fluc in 50 uL PBS by intravenous or intraperitoneal injection.

12
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Flank tumors of MC38 and MC38-Luc were established using 3-5 x 10° cells in matrigel. Tumor
measurements and mouse weight were monitored twice weekly using calipers to calculate tumor
volume, V (mm?®) = (1/2) x A?x B, where A is the shortest, and B is the longest measurement.
Treatment typically occurred when tumors reached 100 - 200 mm?® (approximately 10 days post-
cell-injection) following which mice were randomized into treatment groups (n = 4) such that
average tumor volume in each group is similar. C57BI/6J mice aged 8-12 weeks old were used
for most experiments (Jackson Laboratories, Bar Harbor, ME & Charles River, Wilmington,
MA, RRID:IMSR_JAX:000664, RRID:IMSR_CRL:027). Six-week-old Hsd:Athymic Nude-
Foxnlnu female mice (Envigo, Indianapolis, IN) were purchased and acclimatized for
seven days.

Mice were maintained in a biosafety containment level 2 facility within our vivarium where the
environment was temperature and light controlled with 12-hour light and 12-hour dark cycles,
and food and water were ingested ad libitum. All animal experiments were performed with

approval of the City of Hope Institutional Animal Care and Use Committee (IACUC).

Immunohistochemistry

Tumors were harvested and fixed with 10% formalin. Paraffin-embedded 5 pm thick tumor
sections were obtained. The slides were deparaffinized followed by heat-mediated antigen-
retrieval per manufacturer’s protocol (IHC World, Ellicott City, MD). Tumor slides were then
permeabilized with cold methanol and blocked for 30 minutes with TNB Blocking buffer
(PerkinElmer, Waltham, MA). Tumor slides were incubated with a rabbit anti-vaccinia virus
antibody (Abcam, Cambridge, MA, RRID:AB_778768) 1:100 in TNB blocking buffer in a

humidified chamber at 4°C for overnight. The next day, tumor slides were stained with Alexa

13
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Fluor-488-conjugated goat anti-rabbit (Abcam, Cambridge, MA, RRID:AB_2630356) 1:200 in
TNB blocking buffer for 1 hour at room temperature. Finally, the slides were counterstained with
4'6-diamidino-2-phenylindole (DAPI). IHC for CD8 was performed by the Pathology Core at
City of Hope. Images were obtained using the Nanozoomer 2.0HT digital slide scanner
(Hamamatsu Photonics, Hamamatsu City, Shizuoka Pref., Japan) or Ventana iScan HT (Roche,

Basel, Switzerland).

Flow cytometry

Single cells from tumors were generated using mouse Tumor Dissociation Kit utilizing
GentleMACS dissociator (Miltenyi Biotec, Cologne, Germany). Cells were stained with
LIVE/DEAD Fixable dye (Invitrogen, Carlsbad, CA) in PBS for 30 minutes at 4°C in dark. Next,
Fc receptors on the cells were blocked using an anti-CD16/32 antibody (BD Biosciences,
Franklin Lakes, NJ, RRID: AB_394657 in FACS buffer (PBS containing 2% FBS) for 10
minutes and then stained for 30 minutes at 4°C in the dark using the following antibodies: mouse
CD45- peridinin  chlorophyll  protein  complex (PerCP) (Biolegend, San Diego,
RRID:AB_893340), mouse CD3- fluorescein isothiocyanate (FITC) (eBiosciences, San Diego,
CA, RRID:AB_2572431), mouse CD4-APC (Biolegend, San Diego, CA, RRID:AB_389325)
and mouse CD8- VioGreen (Miltenyi Biotec, Cologne, Germany RRID:AB_2659495). The data
were acquired using the MACSQuant Analyzer 10 (Miltenyi Biotec, Cologne, Germany). Data

were analyzed using the FlowJo software (v10, TreeStar, Ashland, OR).

Statistical Analysis

14
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Statistical analysis was performed using GraphPad Prism (Version 7.01, La Jolla, CA). Student’s
t-test were used to evaluate statistical significance. p < 0.05 was considered significant. Where

present in figures, error bars indicate SD or SEM as defined in legends.
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Table 1
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per #pts
in trial

Disease
treated

Actual
image

2001 HSV-1-tk in Unclear pfu Recurrent [“'I]-FIAU- !
Lancet liposomal in 30mL Glioblastoma | PET [HE
Jacobs et al. vector DAC- | (IT) MET-PET
30 FDG-PET
MRI brain
2005 AdCMVtk 2e10-2e12 ar7 Hepatocellular | PET-CT None
Gastroenterology (Im High dose | Carcinoma MRI listed
Penuelas et al. only [**F]FHBG-
PET torso
2008 Ad5- lell-1e12 7/12 Prostate cancer | SPECT/CT of | NCT
Molecular Therapy | YCDUtTKsrss | (IPR) multiple pts | 00583492
Barton K et al. rep-hNIS pelvis
2014 MV-NIS le6-1lell 2/2 Recurrent PET/CT of NCT
Mayo Clinic (V) plasma cell forehead 00450814
Proceedings myeloma SPECT/CT &
Russell S et al. PET of whole
body day 1,
8, 15, 28
2015 MV-NIS 1e8-1e9 3/16 Drug-resistant | SPECT/CT NCT
Cancer Res (IP) High dose | ovarian cancer | left pelvis ey
Galanis E et al. only tumor
2017 GL-ONC1 3e8 —3e9 #images Locoregionally | Fluorescent NCT
Clin Canc Res (V) not advanced head | image of pox | 01584284
Mell et al. reported/ | & neck lesions noting
19 carcinoma systemic
infection
2017 MV-NIS le6-1lell 8/32 Refractory SPECT/CT of | NCT
Leukemia (V) Multiple legs with T
Dispenzieri A et al. Myeloma light-up on
day 7 post-
treatment

Table 2
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modality

What labelled
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Disease process
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2016, J Nucl Med PET & | *Zr-Df-1AB2M 18 Prostate Cancer | NCT02760199
Pandit-Taskar N et SPECT

al.

2017, Nature PET-CT | ®2Zr-nivolumab 13 NSCLC | 2015-004760-
Communications 11 (EV)
Niemeijer AN et al.

2018, J Clin Oncol PET-CT 87r- 3 Melanoma | NCT03107663
Suppl Postow M et IAB22M2C HCC

al. (Anti-CD8) NSCLC
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2019, Clin Cancer PET-CT | *zr-AMG211 9 Advanced GI | NCT02291614
Res Moek K et al. (BIiTE Cancer
CEA/CD3)
ClinicalTrials.gov PET-CT %Zr-Df- | ongoing Melanoma, | NCT03802123
IAB22M2C NSCLC, RCC,
(Anti-CD8) SCC

Figure Legends

Figure 1: PET imaging of ***I uptake and bioluminescent luciferase shows CF33-hNIS and
CF33-Fluc tumor tropism

Mice bearing bilateral HT29 flank xenografts were injected in the left flank tumor with CF33-
hNIS. (A) On day 7 following viral injection, robust uptake is noted in the injected left-side
tumor. (B) On day 14, tumor tropism is shown via uptake in the non-injected right-side tumor.
Mice bearing bilateral HCT116 flank xenografts were injected IV or IP with CF33-Fluc. (C)

Both 1V and IP delivery of CF33-Fluc resulted in tumor luminescence.

Figure 2: Virus co-localizes with tumor infiltrating T cells

(A) On day 10 following euthanasia of mice infected with CF33-Fluc, immunofluorescent
vaccinia staining and immunohistochemical CD8+ T cell staining shows co-localization of
virally infected cells and tumor-infiltrating T cells. Vaccinia average magnification 0.8x, scale
bar = 2.5mm; CD8+ magnification 2x, scale bar = 1mm. (B) Treatment schema (C)
Confirmatory experiments using flow cytometry of tumor lysates showed increased CD8+ T cell
infiltration as early as 5 days following viral injection. N = 4 per group, stat = unpaired t-test

with Welch’s correction, ***p < 0.001, **p < 0.01

Figure 3: In vivo labelling of virally-induced immune checkpoint upregulation
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Figure 4: Ex vivo radio-labelling of T cells for image trafficking

Figure 5: Virus-induced tumor changes resulting strategies for comprehensive imaging. (A)
schematic showing a “cold” tumor devoid of effector immune cells infected with oncolytic virus,
expressing functional reporter protein like hNIS, upregulating immune checkpoint expression,
and recruiting and activating immune cells. (B) Opportunities for radiolabeling each step of viral
immunogenicity from hNIS expression resulting in radioisotope uptake to anti-body tagging of

immune checkpoints to infusing radiolabeled immune cells and examining their traffic to tumors
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Herein, we review published clinical images of oncolytic viral replication. We examine progress
and challenges for future comprehensive imaging of immune responses to oncolytic viral
treatment, and propose strategies to non-invasively and reliably image viral delivery, checkpoint

expression, and immune cell trafficking.
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