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ABSTRACT 23 

Oncolytic viruses infect, replicate in, and kill cancer cells, leaving normal cells unharmed; they 24 

also recruit and activate immune cells against tumor cells. While clinical indications for 25 

viroimmunotherapy are growing, barriers to widespread treatment remain. Ensuring real-time 26 

tracking of viral replication and resulting anti-tumor immune responses will overcome some of 27 

these barriers and is thus a top priority. Clinically optimizing trackability of viral replication will 28 

promote safe dose increases, guide serial dosing, and enhance treatment effects. However, viral 29 

delivery is only half the story. Oncolytic viruses are known to upregulate immune checkpoint 30 

expression thereby priming otherwise immunodeficient tumor immune microenvironments for 31 

treatment with checkpoint inhibitors. Novel modalities to track virus-induced changes in tumor 32 

microenvironments include non-invasive measurements of immune cell populations and 33 

responses to viroimmunotherapy such as: 1) In situ use of radiotracers to track checkpoint 34 

protein expression or immune cell traffic, and 2) Ex vivo labelling of immune cells followed by 35 

nuclear medicine imaging. Herein, we review clinical progress toward accurate imaging of 36 

oncolytic virus replication, and further review current status of functional imaging of immune 37 

responses to viroimmunotherapy. 38 

 39 

KEYWORDS: Oncolytic viral therapy, theranostic imaging, viroimmunotherapy 40 
  41 

 42 

43 

Jo
urn

al 
Pre-

pro
of



3 
 

INTRODUCTION  44 

Oncolytic viruses (OVs) are a powerful tool of immunogenicity and are capable of conferring 45 

anti-tumor immunity even to disseminated cancers. While one virus is currently FDA-approved 46 

for melanoma treatment, barriers remain to the widespread use of viroimmunotherapy in solid 47 

tumor treatment algorithms. With an average time to response of approximately 4 months as seen 48 

in the OPTIM trial prompting talimogene laherparepvec (T-Vec) approval,
1-3

 oncolytic 49 

virologists and medical oncologists alike are left to guess whether or not continued OV or other 50 

cancer treatment dosing will benefit the patient. This is especially harrowing in the setting of 51 

pseudo-progression or progression prior to response, which can occur in up to 49% of 52 

responders.
4,5

 In many cases, we simply continue to treat until a tumor marker rises, or an image 53 

demonstrates definitive tumor progression, unaware if we have benefited the patient with the 54 

preceding months of therapy. The inability to non-invasively measure treatment progress in real-55 

time is a barrier shared by OVs, immunotherapies, and traditional cytotoxic treatments alike. 56 

Non-invasive diagnostics that can provide valid feedback would save money, time, and toxicity 57 

for many.  58 

 59 

Attempts at optimizing clinical imaging of viral replication in tumors have been ongoing over the 60 

last 20 years with limited success.
6
 Real-time imaging allows OVs to meet their full theranostic 61 

potential. Indeed, many OVs currently in clinical testing accommodate transgenes encoding 62 

“payloads” that include enhancement of immunogenicity and also reporter genes that allow for 63 

real-time tracking of viral replication. Given that many OVs are tumor-tropic, viral imaging may 64 

elucidate previously undetected tumors. Ultimately, imaging of OV trafficking and viability 65 

could yield truly personalized medicine by guiding variables like future serial injections for 66 
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intratumoral models and dose increases for systemic delivery. However, despite years of clinical 67 

development spanning disease and vector types, optimal dose timing and the best vector and 68 

dosing strategy for each specific tumor remains a challenge.
7
  69 

 70 

Thus far, there are two predominant types of real-time OV imaging: optical and deep tissue 71 

functional imaging. Clinically, optical imaging allows direct visualization of fluorescence. In the 72 

operating room, special laparoscopes can elucidate fluorescent tissue within body cavities; In the 73 

clinic, lamps can reveal fluorescent epidermal or mucosal surfaces.
8
 Functional viral imaging 74 

measures isotope uptake as a surrogate for viral replication with scans like positron emission 75 

tomography (PET) or single photon emission computed tomography (SPECT). Of the reporter-76 

genes in OV clinical trials, human sodium iodide symporter (hNIS) is the most prominent.
9
 77 

However, only a select few investigators have published actual human images.
8,10-15

  78 

 79 

While critical to the success of the field, tracking viral delivery is only half the story. Reliable 80 

non-invasive characterization of virally-induced anti-tumor immune responses also remains 81 

elusive. In vivo and ex vivo techniques for radiolabeling immune cells, cytokines, and co-82 

stimulators or co-inhibitors are rapidly evolving arenas of clinical imaging. To most 83 

comprehensively understand the anti-tumor effects of viroimmunotherapy without invasively 84 

sampling tissue, non-invasive imaging should include viral tracking, measurement of immune 85 

checkpoint expression, and tracking immune cells into tumors. Herein, we review progress and 86 

promise of comprehensive non-invasive imaging of viroimmunotherapy. 87 

 88 

Review of published clinical real-time viral tracking 89 
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As demonstrated by our group and others, real-time tracking of viral replication demonstrates 90 

tumor tropism whether viruses are administered intratumorally (IT), intravenously (IV), or 91 

intraperitoneally (IP) (Figure 1).
16,17

 These experiments were confirmed in previously published 92 

experiments using HCT116 xenografts,
17

 and also as shown here using HT-29 xenografts 93 

infected with a recombinant orthopoxvirus platform (CF33) with tk deletion encoding either 94 

human sodium iodine symporter (CF33-hNIS) or firefly luciferase (CF33-Luc).
16,17

 95 

 96 

Upon comprehensive English literature review from 1995 to present, many abstracts and posters 97 

referencing images on replicating oncolytic viruses were found. However, a surprising paucity of 98 

peer-reviewed publications showed images of non-invasive viral replication tracking. The 99 

authors were only able to identify six peer-reviewed publications with images of viral 100 

replication: four studies demonstrated successful tracking of NIS-encoding OVs via I-123 101 

SPECT/CT, one study used 
18

F-labeled penciclovir analogue, and one used the 
124

I-labeled 102 

substrate for HSV-1-tk to monitor thymidine kinase gene expression (Table 1). In each of the 103 

described studies, the success of imaging appeared dose-dependent. In the NIS-based studies, 104 

images appeared most consistently 7-8 days after treatment.
10-12

 In the tk imaging papers, Jacobs 105 

et al. show [
124

I]-FIAU retention 68 hours after injection whereas Penuelas et al. examined [18F]-106 

FHBG signal 1 week post-injection.
14,15

 In the remaining trial referenced in Table 1, investigators 107 

of a GFP-encoding vaccinia used fluorescent lamps in clinic to examine pox-like rash occurring 108 

in treated patients with head and neck carcinomas. While this does not represent imaging of viral 109 

replication in tumors, the investigators emphasize that such a rash confirms successful systemic 110 

viral replication.
8
  111 

 112 
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Clinical OV image optimization has remained a challenge despite numerous creative adjuncts 113 

like oral contrast,
18

 chemo-tagged radiotracers, and novel highly-specific tracers.
19

 Moreover, in 114 

addition to the expected variability of viral replication between tumor types, even similar types 115 

of tumors in identical anatomic locations exhibit differing can vary. For instance, Rajecki et al 116 

treated a cervical cancer patient with Ad5/3-Δ24-hNIS, acting based upon the findings of Barton 117 

et al. using Ad5-yCD/mutTKSR39rep-hNIS in prostate cancer.
13,20

 Unfortunately, Rajecki and 118 

colleagues saw no evidence of OV-based signal. This may have been due to their study of both a 119 

different vector with hNIS on a different promoter, and also an entirely different disease type. 120 

Groups using hNIS-based imaging have seen more consistent results at higher doses and with 121 

more uniform disease states as detailed in Table 1. However, published images demonstrate that 122 

further optimization is needed to achieve clinical relevance.  Perhaps clinical optimization using 123 

a more potent and rapidly replicating virus platforms like CF33 or herpes simplex viruses 124 

encoding hNIS will render consistent high-yield imaging to guide future therapies. If properly 125 

established, real-time non-invasive deep tissue imaging will enable more rapid incorporation of 126 

imageable viroimmunotherapies into solid tumor treatment schema. 127 

 128 

Viral replication co-localizes with tumor T cell infiltration 129 

To further assess whether non-invasive viral imaging can serve as a linear surrogate for both 130 

viral replication and T cell infiltration, we confirmed that immunofluorescent vaccinia staining 131 

corresponds to immunohistochemical (IHC) staining showing T cells co-localizing with viral 132 

infection (Figure 2A&B). Moreover, in subsequent experiments, we evaluated immune cell 133 

infiltration and confirmed these IHC findings quantitatively using FACS of tumor lysates to find 134 

that CD8+ tumor infiltration is higher in viral-treated tumors (Figure 2C). We and others have 135 
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shown that CD8+ T cells co-localize to actively replicating virus.
21

 This is aligned with findings 136 

by Sampath et al. which showing direct synergistic interactions between an enveloped vaccinia 137 

virus and immune cell components.
22

 While co-localized viral particles and immune cells 138 

suggest that non-invasive imaging of viral replication corresponds to immune cell trafficking, 139 

only by specifically imaging immune cells or invasively sampling tumors can we confirm this. 140 

 141 

Imaging virally-induced immune checkpoint expression 142 

Our group and others have demonstrated upregulated PD-L1 in tumors following poxvirus 143 

infection.
23,24

 Many feel such upregulation mediates the success of combination therapies pairing 144 

oncolytic viruses with checkpoint inhibitors in advanced solid tumors.
25

 Others feel that viruses 145 

pair well with checkpoint inhibitors simply because they release inflammatory damage- and 146 

pathogen-associated proteins into the tumor microenvironment, thereby recruiting and activating 147 

immune cells in the tumor microenvironment.
26

 In order to find the most effective place in 148 

treatment algorithms for oncolytic viruses amid the already tumultuous sea of immune 149 

checkpoint inhibitors available, we must fully characterize both checkpoint expression and 150 

immune cell trafficking in real time. While reliably imaging checkpoint expression after 151 

immunotherapy treatment of any sort is a tall order, there is some progress with radiolabeled 152 

antibodies to a variety of checkpoint proteins (Figure 3). Indeed, one can image any point along 153 

the continuum of activating a T cell as it recognizes tumor, from radio-labeled antibodies to 154 

cytokines like IFNγ, cluster of differentiation (CD) cell-surface proteins like CD8, or markers of 155 

activation like granzyme B. At present, in vivo imaging of this nature is plagued by non-specific 156 

background uptake. That said, some progress is being made with highly specific radiotracers and 157 

anti-bodies.
27

 158 
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 159 

Current clinical progress in tracking immune responses to oncolytic virus  160 

To date, imaging of immune responses to viral therapy are sparsely explored. Weibel et al. in 161 

2013 correlated 
19

F-Magnetic Resonance Imaging (MRI) with CD68 staining on IHC in 162 

xenograft models of human melanoma and breast cancer infected with an oncolytic vaccinia 163 

virus GLV-1h68.
28

 These macrophage-dense regions within a tumor tended to surround virally 164 

infected areas of tumor as confirmed with immune-fluorescent staining. While this suggests that 165 

19
F-MRI could serve as a surrogate for tracking immune response to treatment, clinical 166 

translatability of these findings in nude mice is questionable. To take the next steps as a field in 167 

imaging immune responses to oncolytic viral therapy, we will need to draw from the experiences 168 

of our adoptive immune cell colleagues. 169 

 170 

Ex vivo radiolabeling of T cells holds promise to help track efficacy of immunotherapies (Figure 171 

4) in terms of immune cell recruitment.
29

  While this is most broadly explored to track T cells 172 

bearing radiolabeled chimeric antigen receptors, simple co-culture of T cells with radioisotope is 173 

also an effective means of tracking tumor infiltration.  Perhaps the most clinically advanced form 174 

of in vivo targeting and also adoptive cell radiolabeling is found in Zirconium (89-Zr).
30

 Notably 175 

more specific than other tracers such as 18-F given its independence from glucose metabolism,
31

 176 

89-Zr also has the advantages of a long half-life (3.3 days) making it helpful for tracking cells 177 

over at least several days with serial CT-PET imaging.
30

 Moreover, its relatively lower positron 178 

energy renders enhanced resolution of PET images. While other more specific tracers like 179 

Copper are also being studied, the half-life is comparatively short and background signal also 180 

prohibitive in some cases. 
89

Zr-labelled T cells have been successfully employed in clinical 181 
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settings to image CAR-T cell trafficking to non-small cell lung cancer (NSCLC), prostate cancer, 182 

melanoma, and advanced gastrointestinal malignancies as detailed in Table 2.
27,32-34

 While the 183 

alternative of MRI using superparamagnetic iron oxide nanoparticles that are ingested by cells 184 

intended for tracking, this is much more cumbersome and lengthy image acquisition process that 185 

is also highly dependent upon cell function rather than precise labeling as would be required for 186 

comprehensive imaging of viroimmunotherapy.  187 

 188 

The authors propose that an ideal strategy toward comprehensively imaging responses to 189 

oncolytic viroimmunotherapy would take into account the “big picture” of a tumor 190 

transformation following viral infection, including: 1) immediate changes to cancer cells upon 191 

viral entry and replication, 2) initial changes to surrounding tumor immune microenvironment, 192 

and 3) finally alterations in tumor immune cell infiltration (Figure 5a). Each of these three 193 

components of virally-mediated tumor transformation is imageable by tracking virus to tumor 194 

with reporter genes, then flagging upregulation of immune checkpoints, and monitoring effector 195 

immune cell traffic in treated tumors (Figure 5b). In so-doing, investigators would be able to 196 

amend treatment courses in real-time to optimize anti-tumor immune responses and prolong 197 

patient survival. 198 

 199 

CONCLUSION 200 

Herein, we have reviewed the published clinical experience with functional viral imaging and 201 

demonstrate additional possible future directions for tracking viral replication in clinical studies. 202 

We further reviewed current progress and challenges as well as strategies for future 203 

comprehensive imaging of immune responses to oncolytic viral treatment.  In conclusion, this 204 
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paper emphasizes the importance of continued optimization of preclinical and clinical protocols 205 

to visualize viral replication in real-time. While many trials are currently testing imaging 206 

endpoints, we must incentivize further investigations to both speed regulatory approvals and 207 

incorporate viroimmunotherapy into treatment algorithms. In this era of pay-to-play 208 

immunotherapy, patients, clinicians, and payers alike should place high value on real-time proof 209 

of viral tumor tropism and therapeutic benefit. Strategies to non-invasively and reliably image 210 

viral delivery, checkpoint expression, and immune cell trafficking will be critical to advancement 211 

of the field. 212 

 213 

MATERIALS AND METHODS 214 

Literature review 215 

PubMed and ClinicalTrials.gov were queried for search terms including but not limited to 216 

oncolytic virus, SPECT, PET, imaging, NIS, GFP, optical imaging, functional imaging, tracking. 217 

All active clinical trials involving oncolytic viral imaging were reviewed. Trial vectors and key 218 

words were used in PubMed to search for any publications of results. Many trials are still 219 

accruing.
9,35

 Identified publications were included in Table 1 only if a clinically-generated 220 

picture was a figure in the manuscript. There were many published abstracts without pictures 221 

available, and we anticipate images will be forthcoming from several groups in the near future.  222 

 223 

Virus chimerization and hNIS or Fluc cloning  224 

The chimerization, cloning, competitive selection, and sequence of CF33 backbone virus 225 

have been described previously.
36-39

 Insertion of the hNIS expression cassette or firefly luciferase 226 

under the control of the vaccinia H5 promoter or synthetic early (SE) promoter at the J2R locus 227 
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has also been described,
17,40

 as has the deletion of the F14.5L gene,
37

 and insertion of the anti-228 

PD-L1 transgene at the F14.5L locus.
41

  229 

In vitro luciferase activity was confirmed by infecting HCT-116 cells with CF33-Fluc at 230 

varying multiplicities of infection (MOIs). Rapid luciferase activity was observed after 24-hours 231 

by adding 100x luciferin solution (prepared as below) directly to wells and imaging after 10 232 

minutes with Lago X optical imaging system (Spectral Instruments Imaging, Tucson, AZ).  233 

 234 

Cell lines 235 

HT-29 (RRID:CVCL_0320), HCT116 (RRID:CVCL_0291) and African green monkey kidney 236 

fibroblasts - CV-1 (RRID:CVCL_0229) cell lines were purchased from ATCC (Manassas, 237 

Virginia). All Human colorectal cell lines were maintained in McCoy’s 5A medium (Gibco, 238 

Gaithersburg, MD) and CV-1 cells were maintained in Dulbecco’s modified Eagle’s medium 239 

(Corning, Corning, NY). MC38 and MC38-Luc cells were a kind gift from Dr. Laleh Melstrom’s 240 

laboratory (City of Hope, Duarte, CA). MC38 and MC38-Luc cells were maintained in DMEM. 241 

All cells were supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic 242 

solution, both purchased from Corning (Corning, NY). The cells were maintained in a 243 

humidified incubator at 37°C and 5% CO2. Efforts were made not to perform experiments past 244 

15 passages of cells. All cell lines were tested for mycoplasma before each experiment initiation. 245 

 246 

PET imaging 247 

In vivo I-124 uptake measured by PET/CT 248 

Mice bearing HT-29 flank xenografts were divided into imaging and control groups (n=4 249 

mice). To analyze tumor imageability after intratumoral delivery, mice received an intratumoral 250 
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injection of 10
4
 pfu per tumor of either CF33-hNIS, CF33-Fluc or PBS when tumors reached 251 

100mm
3
. At 7, 14, and 21 days post-viral injection, mice in each group received 200uCi of I-124 252 

injected per tail vein. The radioisotope was obtained from the City of Hope Small Animal 253 

Imaging Core Radiopharmacy. PET imaging was then obtained 2 hours following injection using 254 

the small animal PET scanner (microPET R4, Siemens Corporation) which provides fully 3-255 

dimensional PET imaging with a spatial resolution of better than 2.0 mm and quantitative 256 

accuracy for measurement of tissue activity concentration on the order of 10%. Quantitative 257 

accuracy is supported by scatter, dead time and measured attenuation corrections. The system 258 

includes a fully developed image analysis package that supports volumetric regions of interest 259 

and the fusion of PET with co-registered anatomic CT. To protect mouse thyroids from 260 

radioiodine ablation, all mice received T4 supplementation with 5mg levothyroxine/L of water 261 

beginning one week before radioiodine administration. 262 

Luciferase imaging 263 

Firefly luciferin solution was prepared as per manufacturer’s instruction (PerkinElmer, Waltham, 264 

MA). Imaging was obtained after intraperitoneal delivery of luciferin in a control mouse and all mice 265 

treated with CF33-Fluc using Lago X optical imaging system (Spectral Instruments Imaging, Tucson, 266 

AZ) after 15 minutes incubation.  267 

Tumor models and virus dosing  268 

For the HCT116 xenograft model, 2-3 x 10
6 

of HTCT116 cells were injected into 6-8 week old 269 

female nude mouse flank using a total of 100 µL PBS containing 50% matrigel for each tumor. 270 

When the average tumor size approached 150 mm
3
, mice were divided into experimental groups 271 

and treated with 10
5
 pfu of CF33-Fluc in 50 µL PBS by intravenous or intraperitoneal injection. 272 

 273 
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Flank tumors of MC38 and MC38-Luc were established using 3-5 x 10
5
 cells in matrigel. Tumor 274 

measurements and mouse weight were monitored twice weekly using calipers to calculate tumor 275 

volume, V (mm
3
) = (1/2) x A

2 
x B, where A is the shortest, and B is the longest measurement. 276 

Treatment typically occurred when tumors reached 100 - 200 mm
3
 (approximately 10 days post-277 

cell-injection) following which mice were randomized into treatment groups (n = 4) such that 278 

average tumor volume in each group is similar. C57Bl/6J mice aged 8-12 weeks old were used 279 

for most experiments (Jackson Laboratories, Bar Harbor, ME & Charles River, Wilmington, 280 

MA, RRID:IMSR_JAX:000664, RRID:IMSR_CRL:027). Six-week-old Hsd:Athymic Nude-281 

Foxn1nu female mice (Envigo, Indianapolis, IN) were purchased and acclimatized for 282 

seven days.   283 

Mice were maintained in a biosafety containment level 2 facility within our vivarium where the 284 

environment was temperature and light controlled with 12-hour light and 12-hour dark cycles, 285 

and food and water were ingested ad libitum. All animal experiments were performed with 286 

approval of the City of Hope Institutional Animal Care and Use Committee (IACUC). 287 

 288 

Immunohistochemistry  289 

Tumors were harvested and fixed with 10% formalin. Paraffin-embedded 5 µm thick tumor 290 

sections were obtained. The slides were deparaffinized followed by heat-mediated antigen-291 

retrieval per manufacturer’s protocol (IHC World, Ellicott City, MD). Tumor slides were then 292 

permeabilized with cold methanol and blocked for 30 minutes with TNB Blocking buffer 293 

(PerkinElmer, Waltham, MA). Tumor slides were incubated with a rabbit anti-vaccinia virus 294 

antibody (Abcam, Cambridge, MA, RRID:AB_778768) 1:100 in TNB blocking buffer in a 295 

humidified chamber at 4°C for overnight. The next day, tumor slides were stained with Alexa 296 
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Fluor-488-conjugated goat anti-rabbit (Abcam, Cambridge, MA, RRID:AB_2630356) 1:200 in 297 

TNB blocking buffer for 1 hour at room temperature. Finally, the slides were counterstained with 298 

4′6-diamidino-2-phenylindole (DAPI). IHC for CD8 was performed by the Pathology Core at 299 

City of Hope. Images were obtained using the Nanozoomer 2.0HT digital slide scanner 300 

(Hamamatsu Photonics, Hamamatsu City, Shizuoka Pref., Japan) or Ventana iScan HT (Roche, 301 

Basel, Switzerland). 302 

 303 

Flow cytometry  304 

Single cells from tumors were generated using mouse Tumor Dissociation Kit utilizing 305 

GentleMACS dissociator (Miltenyi Biotec, Cologne, Germany). Cells were stained with 306 

LIVE/DEAD Fixable dye (Invitrogen, Carlsbad, CA) in PBS for 30 minutes at 4°C in dark. Next,  307 

Fc receptors on the cells were blocked using an anti-CD16/32 antibody (BD Biosciences, 308 

Franklin Lakes, NJ, RRID: AB_394657 in FACS buffer (PBS containing 2% FBS)  for 10 309 

minutes and then stained for 30 minutes at 4°C in the dark using the following antibodies: mouse 310 

CD45- peridinin chlorophyll protein complex (PerCP) (Biolegend, San Diego, 311 

RRID:AB_893340), mouse CD3- fluorescein isothiocyanate (FITC) (eBiosciences, San Diego, 312 

CA, RRID:AB_2572431), mouse CD4-APC (Biolegend, San Diego, CA, RRID:AB_389325) 313 

and mouse CD8- VioGreen (Miltenyi Biotec, Cologne, Germany RRID:AB_2659495). The data 314 

were acquired using the MACSQuant Analyzer 10 (Miltenyi Biotec, Cologne, Germany). Data 315 

were analyzed using the FlowJo software (v10, TreeStar, Ashland, OR). 316 

 317 

Statistical Analysis  318 
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Statistical analysis was performed using GraphPad Prism (Version 7.01, La Jolla, CA). Student’s 319 

t-test were used to evaluate statistical significance. p < 0.05 was considered significant. Where 320 

present in figures, error bars indicate SD or SEM as defined in legends. 321 

 322 
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image of pox 
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2017 
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MV-NIS 

 

1e6-1e11 

(IV) 
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Multiple 
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SPECT/CT of 
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Table 2 495 
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al. 

PET-CT 

 

89
Zr-

IAB22M2C 

(Anti-CD8) 
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Res Moek K et al. 
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 496 

Figure Legends 497 

Figure 1: PET imaging of 
124

I uptake and bioluminescent luciferase shows CF33-hNIS and 498 

CF33-Fluc tumor tropism  499 

Mice bearing bilateral HT29 flank xenografts were injected in the left flank tumor with CF33-500 

hNIS. (A) On day 7 following viral injection, robust uptake is noted in the injected left-side 501 

tumor. (B) On day 14, tumor tropism is shown via uptake in the non-injected right-side tumor. 502 

Mice bearing bilateral HCT116 flank xenografts were injected IV or IP with CF33-Fluc. (C) 503 

Both IV and IP delivery of CF33-Fluc resulted in tumor luminescence.  504 

 505 

Figure 2: Virus co-localizes with tumor infiltrating T cells 506 

(A) On day 10 following euthanasia of mice infected with CF33-Fluc, immunofluorescent 507 

vaccinia staining and immunohistochemical CD8+ T cell staining shows co-localization of 508 

virally infected cells and tumor-infiltrating T cells. Vaccinia average magnification 0.8x, scale 509 

bar = 2.5mm; CD8+ magnification 2x, scale bar = 1mm. (B) Treatment schema (C) 510 

Confirmatory experiments using flow cytometry of tumor lysates showed increased CD8+ T cell 511 

infiltration as early as 5 days following viral injection. N = 4 per group, stat = unpaired t-test 512 

with Welch’s correction, ***p < 0.001, **p < 0.01 513 

 514 

Figure 3: In vivo labelling of virally-induced immune checkpoint upregulation  515 

 516 
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Figure 4: Ex vivo radio-labelling of T cells for image trafficking 517 

 518 

Figure 5: Virus-induced tumor changes resulting strategies for comprehensive imaging. (A) 519 

schematic showing a “cold” tumor devoid of effector immune cells infected with oncolytic virus, 520 

expressing functional reporter protein like hNIS, upregulating immune checkpoint expression, 521 

and recruiting and activating immune cells. (B) Opportunities for radiolabeling each step of viral 522 

immunogenicity from hNIS expression resulting in radioisotope uptake to anti-body tagging of 523 

immune checkpoints to infusing radiolabeled immune cells and examining their traffic to tumors 524 

 525 
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eTOC 

Herein, we review published clinical images of oncolytic viral replication. We examine progress 

and challenges for future comprehensive imaging of immune responses to oncolytic viral 

treatment, and propose strategies to non-invasively and reliably image viral delivery, checkpoint 

expression, and immune cell trafficking. 
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